
Social Secret Sharing in Cloud Computing Using a
New Trust Function

Mehrdad Nojoumian and Douglas R. Stinson
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

mnojoumi@cs.uwaterloo.ca, dstinson@math.uwaterloo.ca

Abstract—We first review the notion of social secret sharing
and its trust function. We then illustrate how this construction
can be used in cloud computing to create a self-organizing
environment. In fact, we show distributed secure systems using
threshold secret sharing can be adjusted automatically based on
the resource availability of the cloud providers. Accordingly, we
propose a new trust function with social characteristics in order
to improve the existing social secret sharing scheme.

Keywords: trust modeling, secret sharing, cloud computing.

I. INTRODUCTION

In a secret sharing scheme, a secret � is divided into n
shares in order to be distributed among a set of players.
Subsequently, an authorized subset of players collaborate to
reconstruct the secret [1] [2]. In particular, a (t; n)-threshold
secret sharing (TSS) scheme consists of two phases: sharing
and recovery. All computations are performed in a finite field
Zq where q is a prime number:

1) Secret Sharing: a dealer selects f(x) 2 Zq[x] of degree
t � 1 such that f(0) = � is the secret. The dealer then
sends shares f(



To assign multiple shares rather than a single share to some
players, weighted secret sharing (WSS) is introduced in [13].
Suppose in a company, the secret key of the safe deposit
box is shared among chief executive officer, director, and two
managers. Let assume these parties receive 4; 3; 2; 2 shares
respectively on a polynomial of degree 5. As a result, the
chief executive officer can open the safe deposit box with the
director or one manager but the other parties can only open it
if they all collaborate. Indeed, weighted secret sharing is used
to prioritize different players in a hierarchy structure.

A. Motivation and Contribution

We illustrate how social secret sharing (SSS) can be applied
in distributed secure systems using cloud computing infrastruc-
tures. Moreover, we intend to improve social secret sharing by
proposing a new trust function.

Therefore, as our contributions, we first explain a scenario
in which this cryptographic primitive can be used to create
a self-organizing protocol in the cloud. In fact, we show a
distributed system can be reconfigured automatically based on
the resource availability of the cloud providers. Subsequently,
we provide a new trust function with social properties in order
to improve the existing social secret sharing scheme.

B. Organization

The rest of this paper is organized as follows. Section II re-
views the notion of social secret sharing. Section III illustrates
a new application of this scheme in cloud computing. Section
IV proposes a new trust function. Finally, Section V provides
concluding remarks.

II. REVIEW OF SOCIAL SECRET S





for several times in order to gain a high trust value. He can then
defect in a critical transaction to severely damage the scheme.
By considering this transaction cost parameter, a weight for
“cooperation” or “defection” is defined and accordingly the
trust value is adjusted.

III. APPLICATION IN CLOUD COMPUTING

In cloud computing, different commercial providers (such
as Amazon, Google, and Microsoft) offer computing services
to consumers. The major goal is to provide “computing”,
“storage”, and “software” as a service. As a result, consumers
do not need to invest in IT infrastructure on their own. They
can obtain these services from external providers according
to their demands by a pay-per-use model [18], i.e., obtaining
more services in the case of growing demand and vise versa.

A significant challenge in cloud computing is “resource
management” due to the consumers’ expectations in terms
of resource availability, overall performance, etc. In some
settings, enterprises provide valuations to service providers
(i.e., the money they are going to pay if cloud providers satisfy
their demands). The service providers then try to maximize
their own profit, for instance, by prioritizing the consumers’
jobs. All these factors may lead to competition, negotiation,
dynamic allocation, and automatic load balancing. For an
extensive survey on this matter, see [19].

We demonstrate a new method of share distribution over the
cloud in a secure system using threshold secret sharing. The
question is how such systems can be automatically configured
based on the availability of different components. This can
help to better comply with the service-level agreements (SLA)
established between the cloud providers and consumers. We
believe that the challenge can be seen as a cooperative game
between the cloud providers and consumers, that is:

1) For the service providers to comply with the service-level
agreements.

2) For the consumers to receive their services with a high
satisfaction rate.

As an example, we can refer to excessive spike in online
shopping with “Amazon” at the end of the year. It would be
helpful for both consumers and service providers if the system
takes an automatic configuration strategy and relies less on
busier components during certain periods. We illustrate how
this can be accomplished by continuous interactions between
the providers and consumers.

The good news is that, in a distributed secure system
using threshold secret sharing, even if some servers do not
act properly (for instance, due to an adversarial attack or
delay in response time), the system can still accomplish the
task if certain number of components operate appropriately.
Therefore, we intend to show this cooperation can be modeled
by social secret sharing. In other words, the consumers use a
reputation management system to rate different components of
the cloud. Subsequently, the system is reconfigured over the
cloud to guarantee the service-level agreement.

Our model consists of a dealer who initiates a weighed se-
cret sharing scheme, n cloud providers denoted by P1; : : : ; Pn,
and many servers interacting with the cloud providers. Let
~r = (r1; r2; : : : ; rn) and ~w = (w1; w2; : : : ; wn) be the vector
of players’ trust values and the vector of players’ weights
accordingly. The initial values in ~r are going to be zero (i.e.,
all service providers are treated as newcomers), whereas the
initial values in ~w are chosen by the dealer based on a specific
distribution. We first define the following actions where each
player’s action Ai 2 fC;D;Xg:

1) C: for cooperative players where Pi is available at the
required time and he sends correct shares to other parties.

2) D: for uncooperative players where Pi



w2 = 2w1 = 4

GoogleAmazon
s5 s6

s4

s1 s2
s3

Dealer
Free

64 DealerFig. 3. Weight Adjustment

Based on the service providers’ actions Ai 2 fC;Dg as well
as a trust function, these servers rate each component of the
cloud in terms of its response time; this issue is going to be
more critical in real-time systems where “response time” plays
an important role. Consequently, the weight of each service
provider is changed according to his new trust value. For
instance, as shown in Figure 3, the weights of two components
are going to be updated. To see how amplification or reduction
of a trust value affects the weight of a player, see [16] for
trust-to-share ratio computation.

In the case of corruption Ai = X , the corrupted providers
are first rebooted. They then return to the scheme and are
treated as newcomers. As we illustrated earlier, corrupted
actions (e.g., sending incorrect shares) are detectable by using
a verifiable secret sharing scheme.

In the final phase, the service providers jointly collaborate
to reconfigure the scheme according to new weights, shown
in Figure 4. They initially enroll the new shares by using an
enrollment protocol, e.g., suppose share s14 is enrolled for
the fourth party. Subsequently, shares are updated (except the
shares that are scheduled to be disenrolled) such that they are
transformed to a new secret sharing polynomial, e.g., suppose
share s4 is not updated. Hence, the first player is going to
have three shares afterward.

The benefit of using threshold secret sharing in a distributed
secure system is its “fault-tolerance” and “availability”. For
instance, if one component is compromised by an adversary
or he responds with delay, other participants can carry out the
intented procedure. In the next section, we provide a new trust
function that better fits to our model.

IV. NEW TRUST FUNCTION

We would like to design a new trust function with social
characteristics. The function that we reviewed in Section d



Our modified trust function, termed “social trust function”,
is as follows, using the previous �(x) and �′(x) functions:

Ti(p) =

8>>><>>>:
Ti(p� 1) + (1� �

n
)�(x) if ‘i = 1

Ti(p� 1)� (
�

n
)�′(x) if ‘i = 0

where � =
Pn

i=1 ‘i. By using the same �(x) function for
trust amplification and reduction in the case of cooperation
and defection, the trust function can be simplified as follows:

Ti(p) = Ti(p� 1) + (‘i �
�

n
)�(x):

An example of the new social trust function is provided
in Table II for further clarification. Each time the players
“gain” partial of their rewards (e.g., 25%) that is proportional
to the number of “non-cooperative” players. On the other
hand, they “lose” partial of their trust value (e.g., 75%) that
is proportional to the number of “cooperative” players.

� =
Pn

i=1 ‘i Cooperation Defection

n Ti(p− 1) no defection

3
4
n Ti(p− 1) + 0:25�(x) Ti(p− 1)− 0:75�′(x)

1
2
n Ti(p− 1) + 0:5�(x) Ti(p− 1)− 0:5�′(x)

1
4
n Ti(p− 1) + 0:75�(x) Ti(p− 1)− 0:25�′(x)

0 no cooperation BT
/F76 7.9701 Tf 139.913 4∈7.10∈ Td [(T)]TJ/F75 5.9776 Tf 4.673 -1.∈15 Td [(i)]TJ/F7∈ 7.9701 Tf 3.16∈ 1.∈15 Td [(()]TJ/F74 7.9701 Tf 3.∈93 0 Td [(p)]TJ/F76 7.9701 Tf 6.145 0 Td [(−)]TJ/F7∈ 7.9701 Ts.875j6 7.970-E76ve� players.



[20] K. Peng, C. Boyd, E. Dawson, and K. Viswanathan, “Five sealed-bid
auction models,” in the Australasian Information Security Workshop
Conference, AISW’03, vol. 21. Australian Computer Society, 2003,
pp. 77–86.

VI. APPENDIX

A. Example of Threshold Secret Sharing

Example 3: The dealer selects secret sharing polynomial
f(x) = 5 + 3x + 6x2 2 Z13[x]. He then distributes the
following shares among P1; P2; P3; P4 and leaves the scheme:

f(1) = 1; f(2) = 9; f(3) = 3; f(4) = 9

At least three players, say P1; P2; P3, can pool their shares to
recover the secret by Lagrange interpolation as follows:

f(0) =
� 2

2� 1
�� 3

3� 1
�
(1) +

� 1
1� 2

�� 3
3� 2

�
(9)

+
� 1

1� 3
�� 2

2� 3
�
(3) = �21 � 5 mod 13

B. Example of Proactive Secret Sharing

Example 4: Suppose the original secret sharing polynomial
is f(x) = 3+4x+7x2 +5x3 2 Z13[x]. Players P1; P2; P3; P4

receive the following shares from the dealer accordingly, as
shown in Figure 5:

f(1) = 6; f(2) = 1; f(3) = 5; f(4) = 9

The players securely generate g(x) = 0 + 4x+ 2x2 + 10x3 in
the absence of the dealer with the following shares:

g(1) = 3; g(2) = 5; g(3) = 1; g(4) = 12

Each Pi locally adds his shares together. As a result, the new
polynomial will be f̂(x) = 3 + 8x+ 9x2 + 2x3 with shares:

f̂(1) = 9; f̂(2) = 6; f̂(3) = 6; f̂(4) = 8

Fig. 5. Proactive Secret Sharing


