
Secure Error Correction Using Multiparty
Computation

Mohammad G. Raeini and Mehrdad Nojoumian
Department of Computer & Electrical Engineering and Computer Science

Florida Atlantic University, Boca Raton, FL, USA
fmghasemineja2017, mnojoumiang@fau.edu

Abstract—In the last couple of decades, error correction tech-
niques play a prominent role in various scientific and engineering
fields such as information theory, communication, networking,
to name a few. These techniques are mainly utilized to locate
and fix corrupted data over noisy channels. The data might be
corrupted due to various reasons, for instance, communication
failures, noise, or adversarial activities. On the other hand, data-
privacy has been in the center of attention by many researchers
in recent years. As such, it’s important to be able to use error

[6], [8]. As the first set of fundamental applications, we can
refer to integer comparison [9]; equality test [20], [19]; and
interval test [19]. Note that these operation can be utilized
to implement a general purpose secure MPC protocol for
evaluating an arbitrary function on a set of private values,
owned by a group of parties.

Other cryptographic applications consist of joint signature
or decryption schemes in which a group of parties can sign
some documents or decrypt a message whenever a specific
number (which is known as threshold) of the parties are
present [7]; shared RSA keys where some parties can collabo-
rate to generate an RSA key that is shared among them [17];
and Joint signature or decryption schemes that can be utilized
in financial cryptography contexts [7].

Finally, we can refer to electronic auctions with private
bids, a.k.a, sealed-bid auctions, [11], [12]; data aggregation
in IoT-enabled smart metering systems [13]; and private set
intersection [14], [15], in which two parties can compute the
intersection of two sets without revealing their set contents.
Note that private set intersection has applications in other
domains such as privacy-preserving data mining.

III. PRELIMINARIES

In this section, we present some preliminary materials.
These include secure multiparty computation (MPC), Reed-
Solomon codes, called RS codes, Berlekamp-Welch decoding
algorithm for RS codes, called BW algorithm.

A. Secure Multiparty Computation

Secure multiparty computation which its first idea was
introduced by Yao [1] is defined as follows. n parties each
have a private value and intend to evaluate a public function
on their private data in such a way that they don’t reveal any
information about their private inputs but they all can get the
output of the public function. One simple example is that
n parties have n integer values and they intend to find the
maximum value without revealing their private inputs.

Many scientists have conducted research in this area [19],
[20], [22], [5], [21]. In secure multiparty computation, two
approaches can be used. One approach performs computation
based on bits of shared values, and the other approach,
conducts computation based on shared values of secrets in a
finite field Zp, for a prime integer p, [19]. In both cases, secret
sharing schemes, such as Shamir secret sharing [2], can be
utilized to share secret values. However, both approaches have
their own pros and cons, for example, conducting addition or
multiplication is efficient in finite field arithmetic, but using
boolean circuits it is not efficient anymore. Unfortunately,
doing some calculations, such as secret comparisons, is not
efficient and trivial in arithmetic circuits, whereas it is trivial
in boolean circuit calculations [19]. However, for large integers
this task is not efficient when we use boolean circuits.

To overcome the inefficiency of these two scenarios and
having an efficient solution, the authors in [20] presented
a protocol, called bit-decomposition, that allows parties to
convert sharing of finite field elements to sharing of bits. In

[19], the authors improved the bit-decomposition protocol by
reducing its communication complexity. Another work in this
area has been presented in [23] that is based on threshold
homomorphic systems.

B. Reed-Solomon Codes

Reed-Solomon codes was introduced in 1960 in [24]. These
error-correcting codes are based on polynomials over finite
fields and have many applications. In the following discus-
sions, we assume all calculations are done in finite field Zp

for a given prime number p. RS codes encode a message of
length k into a codeword of length n, where k � n � p. Math-
ematically, given a message m = [m0;m1;m2; :::;mk�1], the
polynomial P is defined as follows:

P (x) = m0 +m1x+m2x
2 + :::+mk�1x

k�1 (1)

In which the coefficients are in Zp. To encode the message
m, the polynomial will be evaluated on n

For i = 1; 2; :::; n, key equation, equation 5, will produce
a system of equations, which we can solve it by different
methods in linear algebra, such as Gaussian elimination or
Cramer’s rule. By finding the solution of the key equation,
we can find the locations of the errors, and accordingly, the
polynomial P (x) that gives the corrected message.

IV. SECURE ERROR DETECTION AND CORRECTION USING
MULTIPARTY COMPUTATION

We assume that n parties have n shares and they want to be
able to check if any errors has occurred in their data, because
in secure multiparty computations, parties constantly exchange
shares of their private inputs. We also assume that all the
following calculations are done in finite field Zp where p is a
prime number.

In order to be able to detect and correct e errors, we need to
have at least 3e+1 shares. In other words, 3e+1 parties need
to participate. This is due to theorem 2: n � k + 2e where
k is the message length. Also, we assume that, the number
of errors is less than the message length. That is, the entire
message has not been altered. In the following section, we
will address the problem of error detection, and subsequently,
we provide a technique that allows the parties to recover the
incorrect shares.

A. Locating One Error at a Time

Each player creates an equation using his secret value
(which is denoted by �i for player i).

n�2X
i=0

aix
i = �i(x+ b0) (6)

Therefore, we have n equations, each in the hand of one
party, by which we can define the following system of equa-
tions (consisting of n equations and n unknowns including
a0; a1; a2; :::; an�2; b0).8>><>>:

Pn�2
i=0 aix

i = �1(x+ b0)Pn�2
i=0 aix

i = �2(x+ b0)
:::Pn�2

i=0 aix
i = �n(x+ b0)

(7)

a0; a1; a2; :::; an�2 will be used for the error correction poly-
nomial Q(x) in the BW algorithm and b0 is error locator as the
E(x) polynomial in the BW algorithm. Also, we assume that
all calculations are done in Zp for a public and predefined
prime number p. Now, the players evaluate equations with
x = 1; 2; 3; :::; n, similar to the BW algorithm. As a result,
they have: 8>><>>:

Pn�2
i=0 1iai = �1(1 + b0)Pn�2
i=0 2iai = �2(2 + b0)

:::Pn�2
i=0 n

iai = �n(n+ b0)

(8)

For the sake of simplicity, we use matrix notation to demon-
strate this system of equations:

Ax = b (9)

Where

A =

266666664

1 1 : : : 1n�2 ��1

1 2 : : : 2n�2 ��2

1 3 : : : 3n�2 ��3

...
...

. . .
...

...
1 n� 1 : : : (n� 1)n�2 ��n�1

1 n : : : nn�2 ��n

377777775
(10)

x =

266666664

a0

a1

a2

...
an�2

b0

377777775
and b =

266666664

�1

2�2

3�3

...
(n� 1)�n�1

n�n

377777775
(11)

The first n� 2 columns of the first matrix are public values,
which are the same as the columns of the Vandermone matrix.
If we use Cramer’s rule for solving this system of equations
(just for b0, which determines the location of the error), we
will have:

b0 =
det(A1)

det(A2)
(12)

where

A1 =

266666664

1 1 : : : 1n�2 �1

1 2 : : : 2n�2 2�2

1 3 : : : 3n�2 3�3

...
...

. . .
...

...
1 n� 1 : : : (n� 1)n�2 (n� 1)�n�1

1 n : : : nn�2 n�n

377777775
(13)

and

A2 =

266666664

1 1 : : : 1n�2 ��1

1 2 : : : 2n�2 ��2

1 3 : : : 3n�2 ��3

...
...

. . .
...

...
1 n� 1 : : : (n� 1)n�2 ��n�1

1 n : : : nn�2 ��n

377777775
(14)

If we expand the determinant based on the last column, we
will have:

d1 = det(A1) =

nX
i=1

(�1)i+n(��i)det(A
i;n
1) (15)

and

d2 = det(A2) =

nX
i=1

(�1)i+n(�i)det(A
i;n
2) (16)

where Ai;n is the (n � 1) � (n � 1) matrix that is created
by eliminating the i-th row and n-th column of A. As shown
in the above equation, just �i’s are secret values and the
second term in the summation is a public value. Therefore, to
calculate d1 and d3m41 794 Td [(3)]18]TJ/F :((1 [(()]TJ/F]TJ/F10 6.97]o051o6 Tf 7d [(m41 794 Td [(3)]18]TJ/F)-166(:) 0 [(((jd [(A)]o051)sd)]T-317(a)-3)]T-ublic v446inatio45>

detection algorithm is as following, see algorithm 1.

Algorithm 1 Error Detection Protocol
1: Each player defines his own equation (with his public ID
i and his secret value �i), as follows:

Q(i) = �iE(i) (17)

2: All the players put their public part of their equations in
a matrix. They also put � in the last column that is the
private value of each player. Note that, in the next step
during the Gaussian expansion, this will be eliminated:

A =

266666664

1 1 : : : 1n�2 �
1 2 : : : 2n�2 �
1 3 : : : 3n�2 �
...

...
. . .

...
...

1 n� 1 : : : (n� 1)n�2 �
1 n : : : nn�2 �

377777775
(18)

3: One of the players accepts to calculate det(Ai;n
1) and

det(Ai;n
2), from A matrix. Ai;n means the (n � 1) by

(b�1) matrix that has been created from A by eliminating
its i-th row and n-th column. After calculation, this player
hands out det(Ai;n

1) and det(Ai;n
2) to player i.

4: Subsequently, each player, who just received his related
terms in equations 15 and 16, calculates the multiplication
of his private value by the received term locally, we call
the result value deti for player i.

5: Each player, shares his deti between all other players.
6: Each player adds up his received shares, denoted by si,

i.e., si =
Pn

j=1 detj .
7: Finally, players perform Lagrange interpolation on their
si and get the d1 and d2

In our secure error correction protocol, t players need to
come together to detect and correct an error. To accomplish
this, they first create a system of equations. They will then
represent it in a matrix format, i.e., Ax = b: only one column
of matrix A and also vector b consist of secret values of play-
ers. As they calculate the determinant of the matrix through

