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Abstract: Consensus algorithms are the building block of any decentralized network where the
risk of malicious users is high. These algorithms are required to be robust, scalable, and secure
in order to operate properly. Localized state-change consensus (LSC) is a consensus algorithm
that is specifically designed to handle state-change consensus, where the state value of given data
points can dynamically change and the new value needs to be reflected in the system. LSC utilizes
a trust measurement mechanism to validate messages and also enforce cooperation among users.
Consensus algorithms, and specifically LSC, can be a practical solution for the immutable and secured
communication of autonomous systems with limited computational resources. Indeed, distributed
autonomous systems are growing rapidly and the integrity of their communication protocols for
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execute it automatically by running a simple server that can operate independently. This
is the primary reason that new blockchain applications have been recently developed in
emerging fields such as robotic swarms and autonomous driving [3].

1.1. Consensus Algorithms

The blockchain data structure was first introduced in 1990 by Stuart Habert and W.
Scott Strornetta [4]. The primary goal was to timestamp digital documents, making them
tamper proof. Over the years, blockchain data structure has expanded to many other fields
such as economy, e-voting, assembly line, etc. Many of these applications do not rely on
cryptocurrency exchange, rather, the users exchange information in a decentralized fashion.
Different decentralized applications are classified as either public or private. Public systems
do not have any restriction on peers and they do not require any authentication process for
joining the network or initiating trades. The public decentralized systems are maintained
only by the public community, which means a higher level of decentralization. Private or
permissioned systems operate under the leadership of a group, often called consortium,
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plicable to a dynamic environment, where information is time-bound and can be changed
every so often. A dynamic state-change environment was presented in [11], where the
shared information is a flying configuration between agents in the system. This imple-
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consensus. As shown in Equation (2), a higher reputation value lowers the required
number of votes.

2. Local Consensus: LSC is designed to handle quick changes in immense and highly
dynamic environments. This means that changes can happen quickly and simultane-
ously. Instead of achieving at least 51% consensus, LSC uses a localized consensus
algorithm to verify and validate changes within the environment. Once a local con-
sensus has been achieved, it can be used to achieve a 51% consensus, very much like
any other consensus protocol.

3. Data Validation: LSC helps agents validate the content of the shared data. It utilizes
both localized consensus and reputation values to guarantee any changes in the
environment are reflected on the chain. As stated earlier, validation is related to the
content of the transaction, e.g., a road is blocked, not just on the transaction execution.

To the best of our knowledge, there is no other consensus algorithm with these
properties. Table 1 provides a comparison between state of the art consensus algorithms
and LSC.

Table 1. Summary comparison of blockchain consensus algorithms. Partially taken from [14].

Consensus
Algorithm Designing Goal Type Verification Local Consensus Data Validation *

PoW [1] Sybil-Proof Permission-less Work or Hash No No
PoS [2] Energy Efficient Permission-less Stake No No

PoA [15] Combination of
PoS and PoW Permissioned Vote and Work No No

PoR [6] Reputation-Based
Consensus Permissioned Vote No No

pBFT [16] BFT-Based
Consensus Permissioned Vote No No

Raft [17] Accessible Paxos Permissioned Vote No No

ISRaft [13] Raft for Malicious
Environments Permissioned Vote No No

LSC [This Paper]
Localized

State-Change
Consensus

Permissioned Vote or Localized
Vote Yes Yes

* Data validation on the content of the transaction, not on the transaction execution.

The remainder of this paper is organized as follows. Section 2 presents a summary of
the LSC consensus algorithm with its state-change method, Section 3 covers the consensus
algorithm in detail, Section 4 provides a detailed analysis and finally, Section 5 summarizes
the concluding remarks.

2. Preliminaries, Notations and Definitions

LSC is a scalable decision-making election-based consensus algorithm. This means, un-
like many other blockchain implementations that focus on achieving a consensus for the
transactions on the ledger, LSC is designed to achieve consensus on the validity of the data
that is written on the chain. In other words, LSC is designed to provide decision-based
consensus by validating the information sent among users.

This paper nonetheless describes LSC under the context of a permissioned blockchain.
Users must have prior knowledge of all other users and their signatures. When a new user
joins the network, it goes through a series of enrollment processes where it is assigned
a pair of cryptographic keys and a reputation value. Among the protocol’s immutable
communication, LSC also includes a state-change validation process where a group of users
can change a state of some external information. It then goes through a validation process
that includes the comparison of reputation values and state reading. If the validation data
is accepted by the majority of users, the state changes and it is reflected in the blockchain.
Two major properties that are required for achieving the decision-based consensus are
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authentication and reputation. We assume a resilient reputation model [18] is utilized in our
scheme for the trust management. For the sake of clarity, Table 2 defines our notations.

1. Authentication:
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Table 2. Notation Used.

Notation Description

ui ith agent
T j

i
Trust value assigned by j to i

Ti Reputation value of i
ETi ith Election timeout
PKui Public-key of user i

Sigi Signature of i

dij State of data point j as seen by user i

M[Sigi, dij, t1] Message M signed by i with state s

L Maximum number of nearest agents that can validate a message
hi Voting/signature threshold for approval of messages sent by agent i

3. Our Proposed Localized State-Change Consensus Mechanism

In this section, we cover the LSC consensus protocol as well as the five main commu-
nication algorithms. The main goal of LSC is to allow immutable and real-time decision
making between agents on the LSC network. The second goal is to validate messages
with adjustable reputation values that determine the validity of the agent. LSC achieves
consensus over a set of messages through a Byzantine fault-tolerant (BFT) protocol. This
protocol supports message authentication, partitioning and fast computation, which makes
it ideal for resource-constrained devices.

3.1. Design Overview

LSC consensus protocol is a method where all agents hold an agreed upon ledger
containing data. This ledger is constructed of blocks forming a chain. An agent can be in
either of the three main roles: (1) follower, (2) candidate, or (3) leader. It is also possible to
be an active validator, however, it is a temporary subrole. A leader is the only authority
that can concatenate new blocks to the chain, acting as the miner of the newly concatenated
block. Followers and candidates can add new information to a new block by sending the
data to the leader.

LSC aims at achieving consensus among agents in a highly dynamic environment
with a set of n agents where U = fu1, u2, . . . , ung. Communications among agents are
accomplished using five main algorithms. For the sake of simplicity, we assume that the
communication is conducted on a secured channel without the possibility of having a
man-in-the-middle attack. This, however, can be easily addressed in future works by using
verifiable protocols. The five algorithms are:

• RequestVote: Initiated by a candidate agent and it is sent to all other agents. This
message is sent as part of the election process.

• StateChange: Initiated by any agent and it is sent to L-nearest agents that can validate
a given message. This message consists of the data point ID, new state, timestamp
and signatures of agents approving the data. When a total of hi agents sign the
message sent by agent i, it is sent to the leader to be added to the next block.

• AppendBlock: Initiated by the leader at the end of every leadership term. This message
contains the new block to be added to the chain. The agent receiving this message is
required to respond with a signed approval message.

• CommitBlock: Initiated by the leader after receiving AppendBlock approval from the
majority of agents.

• Heartbeat: Initiated by the leader and it is sent to all other agents. This message
includes signed votes from the election, latest block number and leadership-term
timer counting down to the end of the term. This message is sent periodically.

The number of required validators hi for a StateChange message is defined as:
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Definition 2. Suppose n is the total number of agents in the network and Ti 2 [0, 1)
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3. Leader: A leader is the highest authority who is responsible for sealing the next block
on the LSC network. A leader is elected during the election process, and there can only
be one leader for every newly generated block. Since the leader cannot reasonably
be expected to maintain a fully synchronized communication with all other agents,
it is expected that the followers are able to rebroadcast leader messages, excluding
the heartbeat.

4. Validator: A validator’s main purpose is to verify that a given data point’s state has
changed and that the StateChange message is true and valid. The process is fairly
simple. Validators add their signature to the original StateChange message and then
share it with nearby agents, who then also obtain the validator role.
This is a dynamic role, and any agent can become a validator as long as it is close
enough to the data point and to another validator agent.

3.3. Election Process

The first step of the protocol is to elect a leader in a leader election procedure. A leader is
required to send periodic heartbeat messages to all other agents in the network. This message
contains the signed signatures from the latest election, latest block number and leadership-
term timer. This message acts as a leadership proof. Agents receiving this message validate
the votes and check if the latest block number is at least equal to the block number on their
database. When the timer reaches 0 or when no heartbeat messages have arrived over the
expected period, a new election process begins.

At the beginning of an election, a follower agent changes its state to a candidate, and it
begins sending out signed RequestVote messages, including the latest block number to all
the agents it can contact. The latest block represents the term number of the chosen leader.
For every new term, a new leader is elected. Agent um, who receives a RequestVote message,
initially checks the following conditions:

• The agent did not receive any heartbeat messages from the current leader.
• The candidate agent is not the leader of the current term.
• The block number from the RequestVote message is at least equal to the agent’s latest

block plus 1.
• The message has a valid signature.

If all the conditions are met, the voting agent holds its vote for a fixed period of time
equal to election timeout e. During this time, if any other RequestVote messages arrive, it
once again checks if the conditions are met. If so, it then compares the reputation value
of the candidate agents. At the end of e, the vote is sent only to the agent with the higher
reputation value. Algorithm 1 illustrates the voting response process for an agent after
receiving a RequestVote message.

The process ends when a candidate receives the majority of the votes, that is, at least
n/2 + 1 votes for a network of n agents. At that point, the elected leader starts sending out
heartbeat messages to the network, thus completing the election process.
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Algorithm 1 RequestVote Response.

Require: RequestVote Message (RVi) and Agent (ui)
Ensure: Accept or Reject RV

1: t 0
2: RV  RVi
3: Decrease_reputation(Tm

i )
4: while t 6= e do . Election Timeout
5: if RV.block_num <= len(chain) then
6: Reject RV
7: else if V(ui.pk, RV, S(RV)) == reject then
8: Reject RV
9: end if

10: if new RVj from agent uj then
11: Decrease_reputation(Tm

j )

12: if Tm
i > Tm

j then . Compare reputation
13: Reject RVj
14: else
15: RV  RVj
16: end if
17: end if
18: t t + 1
19: end while
20: Accept RV

3.4. Data Point’s State Architecture—Local Consensus

LSC runs on an environment with a set of m data points S = fd1, d2, . . . , dmg. These
data points are given per environment and can be changed when redeploying the system
in different environments. A single data point can be in any number of states. For the sake
of simplicity, we define these states as numerical values; however, it can be any data type.
As in real life environments, a data point’s state can change independently and randomly
by conditions that the system is not necessarily aware of. It is up to the system to recognize
the change and validate the data on the blockchain. The process goes as follows:

1. An agent uk recognizes a change in the state of some data points dj in the environment.
2. uk then sends a StateChange message to the L-nearest agents, called validators. This

message contains the data point ID, new state and a timestamp.
3. Any other agent receiving the StateChange message can decide whether to add its

signature or not. When an agent adds his signature, it then sends the newly signed
StateChange message back to the sender and to its nearest L agents.

4. Steps 2 and 3 are repeated until a total of hi agents sign the original StateChange
message. The value of h is calculated by the reputation values of the agents and by
the total number of agents (Definition 2).

5. The hi-th agent sends the message to the elected leader to add it to the next block.
6. Once a new block is mined, all other agents in the system update the state of data

point dj to the new state.

This process happens every time an agent recognizes a data point’s state that is
different from the state written on the blockchain. Agents who validate the state change and
add a signature to the original StateChange message are called validators and are rewarded
with reputation value upon a successful state change. The number of validators for each
state change is given at the design level, and can be changed based on the reputation value
of the sender, whenever the system redeploys, or by forking. The reason for this localized
consensus is to prevent overloading the leaders with any state change and to prevent
a possible distributed denial of service (DDoS) attack. Algorithm 2 covers the process
of StateChange message signature. This process can also be referred to as the localized
consensus process.
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Agents near any state change are also likely to sign and send many StateChange
messages from different agents who repeatedly send the signed message. If the message
has already been signed by the recipient, it neither signs, nor sends it again. Another
possible scenario is to have multiple hi-length signed messages of the same origin that
are sent to the leader. In this case, the leader only adds the first message and rejects any
message with the same origin. This process can be represented by an hi tree structure in
which each node is an agent who signed the message and sent it to L other nodes. Figure 2
illustrates an example related to this matter.

Figure 2. Representation of L tree structure.

Here, L = 2, meaning that at most 2 neighboring agents can validate a message,
and a total of h14 = b 30�(1�0.333)

4 c = 5 signatures are required to validate any messages
sent by agent 14, where n = 30 and T14 = 0.333. The numbers within each node repre-
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• Previous Block Hash: The hash value of the previous block.

The blocks are hashed and connected by the appropriate block number and the hashing
value of the previous block. There can only be one leader for any single block. Followers
can add data to the block by sending a signed StateChange message consisting of a list of
the new data point’s states. Each of these items holds the data point ID, new state value of
the data point, original author of the message and the validators’ signatures. The number
of signatures per message is defined by hi and can be different among agents based on their
reputation values. Agents with higher reputation values have to provide more signatures,
hence, more validators are required to verify the authenticity of the message. A leader adds
the state-change message to the block if and only if:

• Enough validators have included their signatures.
• The originator of the message has not already been included in the block.

There can be a case where the leader does not obtain any statechange messages through-
out its leadership term. In this case, the leader simply mines an empty block that does not
contain any state-change data. Figure 3 shows an example for block properties in LSC.

Once a block is ready to be appended at the end of the leadership term, the leader
sends the AppendBlock to all agents in the network. This message includes the next new
block as well as the signed votes from the election in which it won. This prevents anyone
from trying to disguise themselves as the leader. When an agent receives the AppendBlock
message, it checks the following:

• Votes are legitimate.
• Hash value of the previous block and the block number fit the latest block in the chain.

If not, the agent updates the chain from nearby agents.
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agents from sending unauthorized messages and to prevent possible DDoS attacks on the
network. Agents constantly change the reputation values of other agents over the network
based on interactions in the network. Table 3 covers the reputation change for different
messages in detail.

Table 3. LSC messages and their reputation costs.

Message Reputation Cost Details

RequestVote 7 Candidates send this message during the election process. This
does not cost any reputation since we want all agents to have
a chance of winning without the risk of constantly losing on
reputation values.

StateChange 3 Initiated and sent to L-nearest agents, called validators. When
a validator does not approve the state change, either by ob-
serving or by insufficient reputation values, it decreases the
reputation value of the origin agent as well as agents who
signed it. However, if the recipient approves the message and
signs it, it increases the reputation value.

AppendBlock 3 This message is initiated by the leader and is part of the mining
block. This message includes the signed votes from the latest
election. Agents decrease the reputation value of the sender in
the case if the signed votes are not valid.

CommitBlock 3 This message can only be initiated by the leader after the Ap-
pendBlock message was successful. Agents decrease the reputa-
tion value of the sender in the case the included approvals are
not valid.

Hearbeat 7 This periodic message does not affect the reputation value.

Once a new block is committed on the blockchain, the reputation values of all agents
who originated and signed a StateChange message on the new block increase as a reward
in a process, called block reputation increment, where all agents update the state of the
changed data point on the new block.

4. Technical Analysis or Our Proposed Solution

We now evaluate the effectiveness and scalability of LSC followed by security analyses.

4.1. Effectiveness

The effectiveness of the protocol can be measured by the total amount of messages
that are sent among different agents on the network. LSC proposes a simple five-message
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4.2. Scalability—A Storage Analysis

The generic assumption of the blockchain is that each agent can read a committed
block and update the data point with the new state data. When a new block is committed,
it is under the assumption of the LSC protocol that each agent stores the new block along
with all previous blocks back to genesis. This assumption, however, can have some issues,
especially when working with systems that can have limited memory capacity. This issue
creates a scalability issue if the system is required to operate for a long period of time with
many agents.

The memory requirement of each agent depends on the state-change content, the num-
ber of state changes per block and how frequently a new block is mined. More agents means
more validators for any state change. As Definition 2 shows, an increase of n
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Distributed Denial of Service Attack. Distributed denial of service attacks are a very
common attack on systems that rely on communications. In general, this attack is an
adversarial attempt to disrupt the normal activity of other agents by sending frequent
messages to overwhelm a node and cause a traffic jam in the communication. In LSC,
any message is priced with some reputation values. This means that a malicious agent’s
reputation value decreases as long as it continues sending messages. Once a reputation
value reaches the lower threshold for an agent, any other messages sent by it is immediately
dropped, i.e., stopping it from overwhelming the network.

5. Concluding Remarks

This paper provides a new information consensus algorithm for immense and highly
dynamic environments using localized consensus with validations through reputation
values. This algorithm can also be implemented in resource-constrained devices, such as
autonomous systems or other smart devices that communicate over a network without the
need for human intervention. Validation and authenticity of messages is achieved by first
initiating a local consensus using cryptographic communication means and the usage of
reputation values. The consensus can then be expanded globally when the state-change
has been verified. LSC assures confidentiality, integrity and validity of messages on the
blockchain among all agents.

In our future work, we will test the implementation of LSC in a real-world envi-
ronment using communications that can be vulnerable to different side-channel attacks.
We will validate the hardware-layer security of the system and measure its efficiency in
an adversarial environment. We will also explore the possibility of adding more roles
to the system to increase its efficiency and speed when implemented as a decentralized
autonomous organizations (DAO).
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