
Comparing Genetic Algorithm and Guided Local Search
Methods by Symmetric TSP Instances

Mehrdad Nojoumian

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada

mnojoumi@cs.uwaterloo.ca

Divya K. Nair

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada

dknair@cs.uwaterloo.ca

ABSTRACT
This paper aims at comparing Genetic Algorithm (GA) and
Guided Local Search (GLS) methods so as to scrutinize their
behaviors. Authors apply the GLS program with the Fast Local
Search (FLS), developed at University of Essex [24], and
implement a genetic algorithm with partially-mapped and order
crossovers, reciprocal and inversion mutations, and rank and
tournament selections in order to experiment with various
Travelling Salesman Problems. The paper then ends up with two
prominent conclusions regarding the performance of these meta-
heuristic techniques over wide range of symmetric-TSP instances.
First, the GLS-FLS strategy on the s-TSP instances yields the
most promising performance in terms of the near-optimality and
the mean CPU time. Second, the GA results are comparable to
GLS-FLS outcomes on the same s-TSP instances. In the other
word, the GA is able to generate near optimal solutions with some
compromise in the CPU time.

2.1 Combinatorial Optimization Problem
A combinatorial optimization problem can be defined as assigning
values to a set of decision variables such that a function on these
variables (objective function) is minimized when subjected to the
specified set of constraints [10]. Hard combinatorial problems like
the travelling salesman problem are challenging to be solved and
the solving time grows exponentially with the size of the problem.
There is no existing algorithm which can solve the TSP problem
with a polynomial complexity. In fact, it is a prominent
illustration of a class of problems in computational complexity
theory which are classified as NP-hard [11].

2.2 Travelling Salesman Problem
Given a set of cities, n, and the distances among the cities, the
TSP problem is to find a minimum-length tour such that every
city is visited exactly once and returns to the starting point [20].
The formal definition as taken from [20] is as follows: Given a
directed graph, Graph = (V, A) where V is the vertex set: {1...n}
and A is the arc set: {(i, j): i and j Є V}, a cost factor: C ij ≥ 0 is
associated with every arc. The TSP problem finds a partial
digraph, (V, A1) of G such that |A1| = n and for every vertex pair,
v1, v2 Є V, there exist paths from v1 to v2 and v2 to v1 in G,

Zhang and Looks [5] present a new method for the traveling
salesman problem which incorporates backbone information into
the Lin-

been taken from parent1

Figure 5
. Finally, we fill in the gaps with cities

that have not yet been taken, .

Figure 5. Partially-mapped cross over.

In the second approach, called Order Cross Over [17 and 14],

we choose points A and B and copy that range from parent1 to the
child similar to the prior method. Subsequently, we fill in the
remaining indexes with the unused cities in the order that they
appear in parent2 Figure

are penalized depending on the costs, that is, the features with
higher costs are penalized more often than the features with lower
costs. Since the penalty parameters of high cost features are
increased, the solutions possessing these features will be
neglected next time the local search procedure is called, and
therefore search proceeds to more promising regions of the search
space.

5.1 Guided Local Search Procedure
The GLS process is commenced by initializing all the penalty
parameters to zero. At first, the local search procedure is called
and local search proceeds until the first local minimum is reached.
The first time and every other time a local minimum is
encountered, the current cost function is modified to a new
augmented cost function by incrementing the penalties of those
features for which the utility function is a maximum. Then the
local search procedure is invoked again by using the modified
augmented cost function. Figure 7 presents the basic GLS idea;
escaping from a local minimum in the landscape by increasing the
objective function value of its solutions. Figure 8 describes the
pseudo code for the guided local search process.

Figure 7. The basic GLS idea.

Figure 8. GSL pseudo code.

Where, S: search space, g: cost function, h: augmented cost
function, λ: regularization parameter, I i: indicator function for
fea0051>o491/16.8 1(n)-1C�,i

executed most of the s-TSP instances for about 10 runs with a
time budget of 700 sec/run, and the number of iterations is hard
coded in GLS solver to 200K.

The GA algorithm is implemented in Java. Most of the s-TSP
instances were executed for 3-6 runs and the maximum number of
iterations is set to 15000. For each s-TSP instance, we first
generated (4*N, N-number of cities) number of random solutions
and then applied the partially mapped crossover, the inverse
mutation and the rank selection; since this combination yielded
the best outcomes. Table 1 shows the experimental results of
GLS-FLS and GLS-greedy LS and Figure 9 represents the
graphical comparison between these two results. It can be
deduced from the results that, for all the s-TSP instances both
GLS-FLS and GLS-greedy LS compute optimal solutions. The
performance of both GLS variants is almost the same regarding
the optimal solutions, but the results show that GLS-greedy LS
consumes more CPU time than GLS-FLS especially from bier127
to lin318. This remarkable time difference exhibited by GLS-
greedy LS is due to the inherent nature of the greedy-LS, since the

whole neighborhood is searched to find the local minimum during
each stage.

0
500

1000
1500
2000
2500
3000
3500
4000
4500

ei
l5

1

ei
l7

6

kr
oa

10
0

kr
oc

10
0

ei
l1

01

bi
er

12
7

pr
13

6

kr
oa

15
0

u1
59

ra
t1

95

d1
98

kr
oa

20
0

kr
ob

20
0

lin
31

8

Symmetric TSP Instances

M
ea

n
C

PU
 T

im
e

(s
ec

)

GLS-FLS GLS-greedy LS

Figure 9. Graph-plot of GLS-FLS and GLS –greedy LS.

Table 1. Comparison of GLS-FLS and GLS –greedy LS.

TSP
Instances

GLS-FLS GLS- greedy LS
Mean CPU
Time(Sec)

Number of
Runs Excess % Mean CPU

Time(Sec)
Number of

Runs Excess %

eil51 0.57 10 0 1.73 10 0

eil76 0.72 10 0 3.58 10 0

kroa100 1.7 10 0 11.72 10 0

kroc100 0.75 10 0 12.21 10 0

eil101 0.5 10 0 17.62 10 0

bier127 6.6 10 0 236.29 10 0

pr136 12.37 10 0 396.99 9 0.001

kroa150 7.55 10 0 257.58 10 0

u159 4.6 10 0 72.05 10 0

rat195 11.6 10 0 1656 8 0.01

d198 270 10 0 1914.4 10

1010 00

Table 2. Comparison of GLS-FLS-2opt and GA.

TSP
Instances

GLS-FLS-2opt GA
Mean CPU
Time (Sec) Tour Length Number of

Runs Iteration Excess % Mean CPU
Time (Sec)

Tour
Length

Number
of Runs Iteration Excess %

eil51 0.57 426 10 1307 0 3 438 6 2799 0.46

berlin52 0.26 7542 10 563 0 2.78 7542 6 1731 0

eil76 0.72 538 10 3141 0 13 557 6 4754 3.53

kroa100 1.7 21282 10 7485 0 25.2 21466 6 8942 0.86

kroc100 0.75 20749 10 9293 0 33.2 21096 6 6869 1.6

eil101 0.5 629 10 2315 0 27.9 651 6 4999 3.49

bier127 6.6 118282 10 32324 0 90.35 121089 6 9446 2.37

ultimately find the global optimum, thus balancing intensification
and diversification.

Figure 12. Distribution of cities in d198: drilling problem.

8. ACKNOWLEDGMENTS
We highly appreciate Professor Peter van Beek as well as the
anonymous reviewers for their comments.

9. REFERENCES
[1] Voudouris, C. 2000. Guided Local Search Joins the Elite in
Discrete Optimization. DIMACS Workshop on Constraint
Programming and Large Scale Optimization, 29-40.
[2] Voudouris, C. and Tsang, E. 1998. Guided Local Search.
European Journal of Operations Research 113, 80-119.
[3] Voudouris, C. 1997. Guided Local Search for Combinatorial
Optimisation Problems, PhD Dissertation, Department of
Computer Sciences, University of Essex.
[4] Karova, M., Smarkov, V., and Penev, S. 2005. Genetic
Operators: Crossover and Mutation in Solving the TSP Problem.
Conference on Computer Systems and Technologies, 6 pages.
[5] Zhang, W. and Looks, M. 2005. A Novel Local Search
Algorithm for the Traveling Salesman Problem that Exploits
Backbones, 19th

[6] Dong, S., Guo, F., Yuan, J., Wang, R. and Hong, X. 2006. A
Novel Tour Construction Heuristic for Traveling Salesman
Problem Using LFF Principle. In Proceedings of the Joint Conf.
on Information Sciences, Kaohsiung, Taiwan, 4 pages.

 International Joint Conference on Artificial
Intelligence. 343-348.

[7] Pullan, W. 2003. Adapting the Genetic Algorithm to the
Travelling Salesman Problem. Evolutionary Computation 2,
1029-1035.
[8] Gang, P., Limura, L. and Nakayama, S. 2003. A Multiple
Heuristic Search Algorithm for Solving Traveling Salesman
Problem. Parallel and Distributed Computing, 779-783

http://csp.bracil.net/gls.html�
http://elib.zib.de/pub/mp-testdata/tsp/tsplib/�

	N/TiN� �E�SPra 55D[39 ��6 XYZ 70 490 null]/S/GoTora 550 125�R�OllÿP56lt 120 0<5�RPR/Pa 12le(þÿ�1�.�6�I�N�T�RPra�RP803�R�A� �KiN�O�W�L�E�D�G�M/TiN�T�SPra 55D[39 ��6 XYZ 70 57 1null]/S/GoTora 550 127�R�OllÿP56lt4120 0<5�RPR/Pa 12le(þÿ�1�.�8�I�N�T�RPra�RP703�R�C�T�R�C�L�.�S�N�T�R�R�A�N�D� itlU�T�U(N/Ti �W�O(N/KPra 55D[30 ��6 XYZ 32753553null]/S/GoTora 550 129 ��6 /A 156 R/Next 30 ��6 /Paren30 ��6 lÿP56lt6120 0<5�RPR/Pa 12le(þÿ�1�.31�I�N�T�RPra�RP603�R�E�X�Ple(N/I�M/TiN�T�A�L�R�N/TiS�U(L�TPra 55D[20 ��6 XYZ 3275420 null]/S/GoTora 550 155120 0<5�RPR/Pa8�I�N�T�RPra�RP603�1�R�C�o�m�p�a�r�i�s�o�n�R�o�f�R�G(L�S�R�a�n�d�R�G(A�R�o�n�R�s�-�T�S�PPra 550 132 ��6 /A 1562 R/Next 33 ��6 /Paren34 ��6 lÿP56lt8120 0<5�RPR/Pa 12le(þÿ�1�.35�I�N�T�RPra�RP503�R�G�u�i�d�e�d�R�L�o�c�a�l�R�S�e�a�r�c�hPra 55D[12 ��6 XYZ 70 lt 1null]/S/GoTora 550 154 ��6 lÿP56l34120 0<5�RPR/P31�I�N�T�RPra�RP503�1�R�G�u�i�d�e�d�R�L�o�c�a�l�R�S�e�a�r�c�h�R�P�r�o�c�e�d�u�r�ePra 550 153120 0<5�RPR/P31�I�N�þÿ�1�.33�I�N�T�RPra�RP503�2�R�G(L�S�R�w�i�t�h�R�F�a�s�t�R�L�o�c�a�l�R�S�e�a�r�c�h�R�(�F�L�S�)� Pra 550 136 ��6 /A 1563 R/Next 37 ��6 /Paren38 ��6 lÿP56l31 550 132 ��6 /A 1562 R/Next49lÿP56/rt49lÿP56 63�s�3�s�r41G�6 /Paren38 ��6 lÿP56L /POA�L�RT�H�M6 XYZ 7057 1null]/S/Go03ra 550 154 ��6 lÿP56l32 550 132 ��5031�I�N�þÿ�1�.35P56 63�s�3�s�r41G��d�RM 15t�F�ts�t�PP�6 /A 1564931�I�N�þÿ�1�.35P56 66/rt4950P56 63�s�3�s�r41G�3h�R�(�l(�c�ts�t�PP�6 /A 15646120 0<5�RPR35/A 1562 R/Next49lÿP56/rt494RP503�1�R�G�u�i3N/TiN� �ELP56TT�SPr55D[30 ��6 XYZ 321420 null]/S/G6/Paa 550 154 ��6 lÿP56l42R/Next 37 ��6 /Paren44 ��6 lÿP56l44120 0<5�RPR/9a 12le(þÿ�1�.�8�I�N�T�RPra�RP503�1�R�G�u�i2N/TiNBL�E�D�GGN�T�RUU(N/6 XYZ 321635420 null]/S/G1/Paa 550 154 ��6 lÿP56l41 550 132 ��4Pa 12le(þÿ�1�.4RP503�1�R�G�u�i2N/T�r�i�s�o�nbs�tn�F�tsoo�f�R�c�h�ROn�Rts�tms�tz�F�ts�t�PPd�u�r�ePrb�l(�m�6 /A 15645a 12le(þÿ�1�.4RP503�6/rt4946P503�1�R�G�u�i2N/T3R�S�e�a�r�c�hPra 55D[12 ��6 XYZ 70 7 1null]/S6 145a 550 154 ��6 lÿP56l44120 0<5�RPR44a 12le(þÿ�1�.4RP503�6/rt4943P503�1�R�G�u�i2N/T�i�tT[12a�v(�lls�tn�ghPra a�l(�stmsaPPd�u�r�ePrb�l(�m�6 /A 70 7 1null]/S6 59ora 550 129 ��6 /A 70 7 1null]/S6 721ra 550 129 ��6 /A 70 27 1null]/S6 0Paa 550 154 ��6 lÿP56l51120 0<5�RPR/831�I�N�þÿ�1�.35P56 66/rt4938 ��6 3�s�3�s�r41G�2r�i�s�ePrsrsr�ROnv(�r ��6 /A 7057 1null]/3227553ra 550 129 ��6 /A 7057 1null]/32273341a 550 129 ��6 /A 7075420 null]/2276721a 550 129 ��6 /A 7075420 null]S6 6411a 550 129 ��6 /A 7075420 null]/227368ra 550 129 ��6 /A 70 635420 null]7unt 1ra 550 129 ��6

