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ABSTRACT 
This paper aims at comparing Genetic Algorithm (GA) and 
Guided Local Search (GLS) methods so as to scrutinize their 
behaviors. Authors apply the GLS program with the Fast Local 
Search (FLS), developed at University of Essex [24], and 
implement a genetic algorithm with partially-mapped and order 
crossovers, reciprocal and inversion mutations, and rank and 
tournament selections in order to experiment with various 
Travelling Salesman Problems. The paper then ends up with two 
prominent conclusions regarding the performance of these meta-
heuristic techniques over wide range of symmetric-TSP instances. 
First, the GLS-FLS strategy on the s-TSP instances yields the 
most promising performance in terms of the near-optimality and 
the mean CPU time. Second, the GA results are comparable to 
GLS-FLS outcomes on the same s-TSP instances. In the other 
word, the GA is able to generate near optimal solutions with some 
compromise in the CPU time.   



2.1 Combinatorial Optimization Problem 
A combinatorial optimization problem can be defined as assigning 
values to a set of decision variables such that a function on these 
variables (objective function) is minimized when subjected to the 
specified set of constraints [10]. Hard combinatorial problems like 
the travelling salesman problem are challenging to be solved and 
the solving time grows exponentially with the size of the problem. 
There is no existing algorithm which can solve the TSP problem 
with a polynomial complexity. In fact, it is a prominent 
illustration of a class of problems in computational complexity 
theory which are classified as NP-hard [11]. 

2.2 Travelling Salesman Problem 
Given a set of cities, n, and the distances among the cities, the 
TSP problem is to find a minimum-length tour such that every 
city is visited exactly once and returns to the starting point [20]. 
The formal definition as taken from [20] is as follows: Given a 
directed graph, Graph = (V, A) where V is the vertex set: {1...n} 
and A is the arc set: {(i, j): i and j Є V}, a cost factor: C ij ≥ 0 is 
associated with every arc. The TSP problem finds a partial 
digraph, (V, A1) of G such that |A1| = n and for every vertex pair, 
v1, v2 Є V, there exist paths from v1 to v2 and v2 to v1 in G, 



Zhang and Looks [5] present a new method for the traveling 
salesman problem which incorporates backbone information into 
the Lin-
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Figure 5. Partially-mapped cross over. 

 
In the second approach, called Order Cross Over [17 and 14], 

we choose points A and B and copy that range from parent1 to the 
child similar to the prior method. Subsequently, we fill in the 
remaining indexes with the unused cities in the order that they 
appear in parent2 Figure 



are penalized depending on the costs, that is, the features with 
higher costs are penalized more often than the features with lower 
costs. Since the penalty parameters of high cost features are 
increased, the solutions possessing these features will be 
neglected next time the local search procedure is called, and 
therefore search proceeds to more promising regions of the search 
space. 

5.1 Guided Local Search Procedure 
The GLS process is commenced by initializing all the penalty 
parameters to zero. At first, the local search procedure is called 
and local search proceeds until the first local minimum is reached. 
The first time and every other time a local minimum is 
encountered, the current cost function is modified to a new 
augmented cost function by incrementing the penalties of those 
features for which the utility function is a maximum. Then the 
local search procedure is invoked again by using the modified 
augmented cost function. Figure 7 presents the basic GLS idea; 
escaping from a local minimum in the landscape by increasing the 
objective function value of its solutions. Figure 8 describes the 
pseudo code for the guided local search process.  

 

 
Figure 7. The basic GLS idea. 

 
 

 
Figure 8. GSL pseudo code. 

Where, S: search space, g: cost function, h: augmented cost 
function, λ: regularization parameter, I i: indicator function for 
fea0051>o491/16.8 1(n)-1C�,i



executed most of the s-TSP instances for about 10 runs with a 
time budget of 700 sec/run, and the number of iterations is hard 
coded in GLS solver to 200K.  

The GA algorithm is implemented in Java. Most of the s-TSP 
instances were executed for 3-6 runs and the maximum number of 
iterations is set to 15000. For each s-TSP instance, we first 
generated (4*N, N-number of cities) number of random solutions 
and then applied the partially mapped crossover, the inverse 
mutation and the rank selection; since this combination yielded 
the best outcomes. Table 1 shows the experimental results of 
GLS-FLS and GLS-greedy LS and Figure 9 represents the 
graphical comparison between these two results. It can be 
deduced from the results that, for all the s-TSP instances both 
GLS-FLS and GLS-greedy LS compute optimal solutions. The 
performance of both GLS variants is almost the same regarding 
the optimal solutions, but the results show that GLS-greedy LS 
consumes more CPU time than GLS-FLS especially from bier127 
to lin318. This remarkable time difference exhibited by GLS-
greedy LS is due to the inherent nature of the greedy-LS, since the 

whole neighborhood is searched to find the local minimum during 
each stage. 
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Figure 9. Graph-plot of GLS-FLS and GLS –greedy LS. 

 
 

 
 

Table 1. Comparison of GLS-FLS and GLS –greedy LS. 

TSP 
Instances 

GLS-FLS GLS- greedy LS 
Mean CPU 
Time(Sec) 

Number of 
Runs Excess % Mean CPU 

Time(Sec) 
Number of 

Runs Excess % 

eil51 0.57 10 0 1.73 10 0 

eil76 0.72 10 0 3.58 10 0 

kroa100 1.7 10 0 11.72 10 0 

kroc100 0.75 10 0 12.21 10 0 

eil101 0.5 10 0 17.62 10 0 

bier127 6.6 10 0 236.29 10 0 

pr136 12.37 10 0 396.99 9 0.001 

kroa150 7.55 10 0 257.58 10 0 

u159 4.6 10 0 72.05 10 0 

rat195 11.6 10 0 1656 8 0.01 

d198 270 10 0 1914.4 10
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Table 2. Comparison of GLS-FLS-2opt and GA. 

 

TSP 
Instances 

GLS-FLS-2opt GA 
Mean CPU 
Time (Sec) Tour Length Number of 

Runs Iteration Excess % Mean CPU 
Time (Sec) 

Tour 
Length 

Number 
of Runs Iteration Excess % 

eil51 0.57 426 10 1307 0 3 438 6 2799 0.46 

berlin52 0.26 7542 10 563 0 2.78 7542 6 1731 0 

eil76 0.72 538 10 3141 0 13 557 6 4754 3.53 

kroa100 1.7 21282 10 7485 0 25.2 21466 6 8942 0.86 

kroc100 0.75 20749 10 9293 0 33.2 21096 6 6869 1.6 

eil101 0.5 629 10 2315 0 27.9 651 6 4999 3.49 

bier127 6.6 118282 10 32324 0 90.35 121089 6 9446 2.37 



ultimately find the global optimum, thus balancing intensification 
and diversification. 

 

 
Figure 12. Distribution of cities in d198: drilling problem. 
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